Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Ultrasonics ; 69: 144-51, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27107164

RESUMO

The uncertainty of ultrasonic beam parameters from non-destructive testing immersion probes was evaluated using the Guide to the expression of uncertainty in measurement (GUM) uncertainty framework and Monte Carlo Method simulation. The calculated parameters such as focal distance, focal length, focal widths and beam divergence were determined according to EN 12668-2. The typical system configuration used during the mapping acquisition comprises a personal computer connected to an oscilloscope, a signal generator, axes movement controllers, and a water bath. The positioning system allows moving the transducer (or hydrophone) in the water bath. To integrate all system components, a program was developed to allow controlling all the axes, acquire waterborne signals, and calculate essential parameters to assess and calibrate US transducers. All parameters were calculated directly from the raster scans of axial and transversal beam profiles, except beam divergence. Hence, the positioning system resolution and the step size are principal source of uncertainty. Monte Carlo Method simulations were performed by another program that generates pseudo-random samples for the distributions of the involved quantities. In all cases, there were found statistical differences between Monte Carlo and GUM methods.

2.
Ultrasonics ; 58: 87-95, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25578371

RESUMO

A primary reciprocity-based method for calibration of hydrophone magnitude and phase sensitivity is proposed. The method starts determining the transmit transfer function of an auxiliary transducer, based on the self-reciprocity method and using a stainless steel cylinder as reflecting target. Afterwards, the hydrophone, to be calibrated, is positioned facing the auxiliary transducer. The pressure field waveform, calculated at the hydrophone spot and based on the transmit transfer function of an auxiliary transducer, is used together with the output end of cable voltage waveform signal from the hydrophone to yield the calibrated hydrophone sensitivity. The method was tested with two similar membrane hydrophones, at frequencies within the 1.0-7.0 MHz range, in steps of 1.0 MHz. Results for magnitude sensitivity agree, within a confidence level of 95%, with those from previous calibration of same hydrophones at the National Physical Laboratory, in the UK (Enor⩽1.0). Phase sensitivity results agree with literature reported ones concerning the achieved uncertainty. Additionally, the phase sensitivities measured at 5.0 MHz for two similar hydrophones and employing two distinct auxiliary transducers presented no statistical significant difference. The method yielded a relative expanded uncertainty (p=0.95) for the sensitivity magnitude ranging between 6.6 and 7.0%, and an expanded uncertainty (p=0.95) ranging between 12° and 17° for the phase sensitivity. The results obtained so far lead to conclude that the proposed hydrophone calibration method is a validated alternative to the different existing methods.


Assuntos
Ultrassonografia/instrumentação , Calibragem , Reprodutibilidade dos Testes , Transdutores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...